|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM227356365 |
003 |
DE-627 |
005 |
20231224073532.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2013 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la401245d
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0758.xml
|
035 |
|
|
|a (DE-627)NLM227356365
|
035 |
|
|
|a (NLM)23659455
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Tabatabai, Arya
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Liquid-phase gallium-indium alloy electronics with microcontact printing
|
264 |
|
1 |
|c 2013
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 11.12.2013
|
500 |
|
|
|a Date Revised 21.05.2013
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Liquid-phase electronic circuits are patterned on an elastomer substrate with a microcontact printer. The printer head dips into a pool of a liquid-phase gallium-indium alloy, e.g., eutectic gallium-indium (EGaIn) or gallium-indium-tin (Galinstan), and deposits a single drop on a silicone elastomer substrate. After patterned deposition, the liquid-phase circuit is sealed with an additional layer of silicone elastomer. We also demonstrate patterned deposition of the liquid-phase GaIn alloy with a molded polydimethylsiloxane stamp that is manually inked and pressed into an elastomer substrate. As with other liquid-phase electronics produced through needle injection or masked deposition, the circuit is elastically deformable and can be stretched to several times its natural length without losing electronic functionality. In contrast to existing fabrication techniques, microcontact printing and stamp lithography can be used to produce circuits with any planar geometric feature, including electrodes with large planar area, intersecting and closed-loop wires, and combs with multiple terminal electrodes. In air, the surface of the coalesced droplets oxidize to form a thin oxide skin that preserves the shape of the circuit during sealing. This first demonstration of soft-lithography fabrication with liquid-phase GaIn alloy expands the space of allowable circuit geometries and eliminates the need for mold or mask fabrication
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Fassler, Andrew
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Usiak, Claire
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Majidi, Carmel
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 29(2013), 20 vom: 21. Mai, Seite 6194-200
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:29
|g year:2013
|g number:20
|g day:21
|g month:05
|g pages:6194-200
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la401245d
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2013
|e 20
|b 21
|c 05
|h 6194-200
|