Liquid-phase gallium-indium alloy electronics with microcontact printing

Liquid-phase electronic circuits are patterned on an elastomer substrate with a microcontact printer. The printer head dips into a pool of a liquid-phase gallium-indium alloy, e.g., eutectic gallium-indium (EGaIn) or gallium-indium-tin (Galinstan), and deposits a single drop on a silicone elastomer...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 20 vom: 21. Mai, Seite 6194-200
1. Verfasser: Tabatabai, Arya (VerfasserIn)
Weitere Verfasser: Fassler, Andrew, Usiak, Claire, Majidi, Carmel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Liquid-phase electronic circuits are patterned on an elastomer substrate with a microcontact printer. The printer head dips into a pool of a liquid-phase gallium-indium alloy, e.g., eutectic gallium-indium (EGaIn) or gallium-indium-tin (Galinstan), and deposits a single drop on a silicone elastomer substrate. After patterned deposition, the liquid-phase circuit is sealed with an additional layer of silicone elastomer. We also demonstrate patterned deposition of the liquid-phase GaIn alloy with a molded polydimethylsiloxane stamp that is manually inked and pressed into an elastomer substrate. As with other liquid-phase electronics produced through needle injection or masked deposition, the circuit is elastically deformable and can be stretched to several times its natural length without losing electronic functionality. In contrast to existing fabrication techniques, microcontact printing and stamp lithography can be used to produce circuits with any planar geometric feature, including electrodes with large planar area, intersecting and closed-loop wires, and combs with multiple terminal electrodes. In air, the surface of the coalesced droplets oxidize to form a thin oxide skin that preserves the shape of the circuit during sealing. This first demonstration of soft-lithography fabrication with liquid-phase GaIn alloy expands the space of allowable circuit geometries and eliminates the need for mold or mask fabrication
Beschreibung:Date Completed 11.12.2013
Date Revised 21.05.2013
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la401245d