LEADER 01000caa a22002652 4500
001 NLM227113764
003 DE-627
005 20240114232609.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2013.03.014  |2 doi 
028 5 2 |a pubmed24n1253.xml 
035 |a (DE-627)NLM227113764 
035 |a (NLM)23632303 
035 |a (PII)S0176-1617(13)00139-9 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Legrand, Sylvain  |e verfasserin  |4 aut 
245 1 0 |a Combining gene expression and genetic analyses to identify candidate genes involved in cold responses in pea 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.03.2014 
500 |a Date Revised 09.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2013 Elsevier GmbH. All rights reserved. 
520 |a Cold stress affects plant growth and development. In order to better understand the responses to cold (chilling or freezing tolerance), we used two contrasted pea lines. Following a chilling period, the Champagne line becomes tolerant to frost whereas the Terese line remains sensitive. Four suppression subtractive hybridisation libraries were obtained using mRNAs isolated from pea genotypes Champagne and Terese. Using quantitative polymerase chain reaction (qPCR) performed on 159 genes, 43 and 54 genes were identified as differentially expressed at the initial time point and during the time course study, respectively. Molecular markers were developed from the differentially expressed genes and were genotyped on a population of 164 RILs derived from a cross between Champagne and Terese. We identified 5 candidate genes colocalizing with 3 different frost damage quantitative trait loci (QTL) intervals and a protein quantity locus (PQL) rich region previously reported. This investigation revealed the role of constitutive differences between both genotypes in the cold responses, in particular with genes related to glycine degradation pathway that could confer to Champagne a better frost tolerance. We showed that freezing tolerance involves a decrease of expression of genes related to photosynthesis and the expression of a gene involved in the production of cysteine and methionine that could act as cryoprotectant molecules. Although it remains to be confirmed, this study could also reveal the involvement of the jasmonate pathway in the cold responses, since we observed that two genes related to this pathway were mapped in a frost damage QTL interval and in a PQL rich region interval, respectively 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a C-LT 
650 4 |a C-N 
650 4 |a Champagne plants under low-temperature treatment 
650 4 |a Chilling 
650 4 |a Cold acclimation 
650 4 |a FD 
650 4 |a FT 
650 4 |a Freezing tolerance 
650 4 |a HRM 
650 4 |a LG 
650 4 |a LT 
650 4 |a N 
650 4 |a PQL 
650 4 |a Pisum sativum 
650 4 |a SSCP 
650 4 |a SSH 
650 4 |a Suppression subtractive hybridisation 
650 4 |a T-LT 
650 4 |a T-N 
650 4 |a Terese plants under low-temperature treatment 
650 4 |a WFD 
650 4 |a control/unchilled 
650 4 |a control/unchilled Champagne plants 
650 4 |a control·unchilled Terese plants 
650 4 |a freezing tolerance 
650 4 |a frost damages in controlled conditions 
650 4 |a high resolution melting curve 
650 4 |a linkage group 
650 4 |a low temperature 
650 4 |a protein quantitative locus 
650 4 |a single strand conformation polymorphism 
650 4 |a suppression subtractive hybridisation 
650 4 |a winter frost damages in the field 
700 1 |a Marque, Gilles  |e verfasserin  |4 aut 
700 1 |a Blassiau, Christelle  |e verfasserin  |4 aut 
700 1 |a Bluteau, Aurélie  |e verfasserin  |4 aut 
700 1 |a Canoy, Anne-Sophie  |e verfasserin  |4 aut 
700 1 |a Fontaine, Véronique  |e verfasserin  |4 aut 
700 1 |a Jaminon, Odile  |e verfasserin  |4 aut 
700 1 |a Bahrman, Nasser  |e verfasserin  |4 aut 
700 1 |a Mautord, Julie  |e verfasserin  |4 aut 
700 1 |a Morin, Julie  |e verfasserin  |4 aut 
700 1 |a Petit, Aurélie  |e verfasserin  |4 aut 
700 1 |a Baranger, Alain  |e verfasserin  |4 aut 
700 1 |a Rivière, Nathalie  |e verfasserin  |4 aut 
700 1 |a Wilmer, Jeroen  |e verfasserin  |4 aut 
700 1 |a Delbreil, Bruno  |e verfasserin  |4 aut 
700 1 |a Lejeune-Hénaut, Isabelle  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 170(2013), 13 vom: 01. Sept., Seite 1148-57  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnns 
773 1 8 |g volume:170  |g year:2013  |g number:13  |g day:01  |g month:09  |g pages:1148-57 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2013.03.014  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 170  |j 2013  |e 13  |b 01  |c 09  |h 1148-57