Inverse rendering of faces with a 3D morphable model

In this paper, we present a complete framework to inverse render faces with a 3D Morphable Model (3DMM). By decomposing the image formation process into geometric and photometric parts, we are able to state the problem as a multilinear system which can be solved accurately and efficiently. As we tre...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 5 vom: 23. Mai, Seite 1080-93
1. Verfasser: Aldrian, Oswald (VerfasserIn)
Weitere Verfasser: Smith, William A P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM226045641
003 DE-627
005 20231224070536.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2012.206  |2 doi 
028 5 2 |a pubmed24n0753.xml 
035 |a (DE-627)NLM226045641 
035 |a (NLM)23520253 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Aldrian, Oswald  |e verfasserin  |4 aut 
245 1 0 |a Inverse rendering of faces with a 3D morphable model 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2013 
500 |a Date Revised 22.03.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, we present a complete framework to inverse render faces with a 3D Morphable Model (3DMM). By decomposing the image formation process into geometric and photometric parts, we are able to state the problem as a multilinear system which can be solved accurately and efficiently. As we treat each contribution as independent, the objective function is convex in the parameters and a global solution is guaranteed. We start by recovering 3D shape using a novel algorithm which incorporates generalization error of the model obtained from empirical measurements. We then describe two methods to recover facial texture, diffuse lighting, specular reflectance, and camera properties from a single image. The methods make increasingly weak assumptions and can be solved in a linear fashion. We evaluate our findings on a publicly available database, where we are able to outperform an existing state-of-the-art algorithm. We demonstrate the usability of the recovered parameters in a recognition experiment conducted on the CMU-PIE database 
650 4 |a Journal Article 
700 1 |a Smith, William A P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 5 vom: 23. Mai, Seite 1080-93  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:5  |g day:23  |g month:05  |g pages:1080-93 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2012.206  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 5  |b 23  |c 05  |h 1080-93