In-plane rotation and scale invariant clustering using dictionaries

In this paper, we present an approach that simultaneously clusters images and learns dictionaries from the clusters. The method learns dictionaries and clusters images in the radon transform domain. The main feature of the proposed approach is that it provides both in-plane rotation and scale invari...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 6 vom: 21. Juni, Seite 2166-80
1. Verfasser: Chen, Yi-Chen (VerfasserIn)
Weitere Verfasser: Sastry, Challa S, Patel, Vishal M, Phillips, P Jonathon, Chellappa, Rama
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM224934015
003 DE-627
005 20250215000635.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2013.2246178  |2 doi 
028 5 2 |a pubmed25n0749.xml 
035 |a (DE-627)NLM224934015 
035 |a (NLM)23399961 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Yi-Chen  |e verfasserin  |4 aut 
245 1 0 |a In-plane rotation and scale invariant clustering using dictionaries 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.12.2013 
500 |a Date Revised 03.04.2013 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we present an approach that simultaneously clusters images and learns dictionaries from the clusters. The method learns dictionaries and clusters images in the radon transform domain. The main feature of the proposed approach is that it provides both in-plane rotation and scale invariant clustering, which is useful in numerous applications, including content-based image retrieval (CBIR). We demonstrate the effectiveness of our rotation and scale invariant clustering method on a series of CBIR experiments. Experiments are performed on the Smithsonian isolated leaf, Kimia shape, and Brodatz texture datasets. Our method provides both good retrieval performance and greater robustness compared to standard Gabor-based and three state-of-the-art shape-based methods that have similar objectives 
650 4 |a Journal Article 
700 1 |a Sastry, Challa S  |e verfasserin  |4 aut 
700 1 |a Patel, Vishal M  |e verfasserin  |4 aut 
700 1 |a Phillips, P Jonathon  |e verfasserin  |4 aut 
700 1 |a Chellappa, Rama  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 6 vom: 21. Juni, Seite 2166-80  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:6  |g day:21  |g month:06  |g pages:2166-80 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2013.2246178  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 6  |b 21  |c 06  |h 2166-80