In-plane rotation and scale invariant clustering using dictionaries

In this paper, we present an approach that simultaneously clusters images and learns dictionaries from the clusters. The method learns dictionaries and clusters images in the radon transform domain. The main feature of the proposed approach is that it provides both in-plane rotation and scale invari...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 6 vom: 21. Juni, Seite 2166-80
1. Verfasser: Chen, Yi-Chen (VerfasserIn)
Weitere Verfasser: Sastry, Challa S, Patel, Vishal M, Phillips, P Jonathon, Chellappa, Rama
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In this paper, we present an approach that simultaneously clusters images and learns dictionaries from the clusters. The method learns dictionaries and clusters images in the radon transform domain. The main feature of the proposed approach is that it provides both in-plane rotation and scale invariant clustering, which is useful in numerous applications, including content-based image retrieval (CBIR). We demonstrate the effectiveness of our rotation and scale invariant clustering method on a series of CBIR experiments. Experiments are performed on the Smithsonian isolated leaf, Kimia shape, and Brodatz texture datasets. Our method provides both good retrieval performance and greater robustness compared to standard Gabor-based and three state-of-the-art shape-based methods that have similar objectives
Beschreibung:Date Completed 30.12.2013
Date Revised 03.04.2013
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2013.2246178