|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM223995304 |
003 |
DE-627 |
005 |
20231224061938.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2013 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la304550n
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0746.xml
|
035 |
|
|
|a (DE-627)NLM223995304
|
035 |
|
|
|a (NLM)23298177
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Asanuma, Hidehiko
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Nanoplasmonic modification of the local morphology, shape, and wetting properties of nanoflake microparticles
|
264 |
|
1 |
|c 2013
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.01.2014
|
500 |
|
|
|a Date Revised 18.06.2013
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Inducing a phase transition of a self-organized object may trigger its structural transformation. Here, we demonstrate local control of the morphology and shape of self-organized microparticles with a nanoflake outer surface by nanoplasmonic heating. To increase the photothermal efficiency of the microparticles, gold nanoparticles (AuNPs) or single-walled carbon nanotubes (SWCNTs) were incorporated. AuNPs and SWCNTs, which have excellent photothermal activity, acts as photoresponsive heat converters. Because they have distinct absorption characteristics, visible or near-infrared lasers can be used to induce local heating. The photothermal effect was used to spatially confine the melting to the space within the particle and the aggregate; as a result, microparticles with various shapes and morphologies have been fabricated. Such morphological changes lead to a superhydrophobic-hydrophobic wetting transition, which was confirmed by the films constituting the microparticles. The work presented is seen useful for anisotropic particle synthesis, local wetting control, lithography, and morphological control of functional materials
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Nanotubes, Carbon
|2 NLM
|
700 |
1 |
|
|a Subedi, Prabal
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hartmann, Jürgen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shen, Yanfei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Möhwald, Helmuth
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nakanishi, Takashi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Skirtach, Andre
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 29(2013), 24 vom: 18. Juni, Seite 7464-71
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:29
|g year:2013
|g number:24
|g day:18
|g month:06
|g pages:7464-71
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la304550n
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2013
|e 24
|b 18
|c 06
|h 7464-71
|