Nanoplasmonic modification of the local morphology, shape, and wetting properties of nanoflake microparticles

Inducing a phase transition of a self-organized object may trigger its structural transformation. Here, we demonstrate local control of the morphology and shape of self-organized microparticles with a nanoflake outer surface by nanoplasmonic heating. To increase the photothermal efficiency of the mi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 24 vom: 18. Juni, Seite 7464-71
1. Verfasser: Asanuma, Hidehiko (VerfasserIn)
Weitere Verfasser: Subedi, Prabal, Hartmann, Jürgen, Shen, Yanfei, Möhwald, Helmuth, Nakanishi, Takashi, Skirtach, Andre
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Nanotubes, Carbon
Beschreibung
Zusammenfassung:Inducing a phase transition of a self-organized object may trigger its structural transformation. Here, we demonstrate local control of the morphology and shape of self-organized microparticles with a nanoflake outer surface by nanoplasmonic heating. To increase the photothermal efficiency of the microparticles, gold nanoparticles (AuNPs) or single-walled carbon nanotubes (SWCNTs) were incorporated. AuNPs and SWCNTs, which have excellent photothermal activity, acts as photoresponsive heat converters. Because they have distinct absorption characteristics, visible or near-infrared lasers can be used to induce local heating. The photothermal effect was used to spatially confine the melting to the space within the particle and the aggregate; as a result, microparticles with various shapes and morphologies have been fabricated. Such morphological changes lead to a superhydrophobic-hydrophobic wetting transition, which was confirmed by the films constituting the microparticles. The work presented is seen useful for anisotropic particle synthesis, local wetting control, lithography, and morphological control of functional materials
Beschreibung:Date Completed 06.01.2014
Date Revised 18.06.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la304550n