The colloidal state of tannins impacts the nature of their interaction with proteins : the case of salivary proline-rich protein/procyanidins binding

While the definition of tannins has been historically associated with its propensity to bind proteins in a nonspecific way, it is now admitted that specific interaction also occurs. The case of the astringency perception is a good example to illustrate this phenomenon: astringency is commonly descri...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 50 vom: 18. Dez., Seite 17410-8
1. Verfasser: Cala, Olivier (VerfasserIn)
Weitere Verfasser: Dufourc, Erick J, Fouquet, Eric, Manigand, Claude, Laguerre, Michel, Pianet, Isabelle
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Biflavonoids Micelles Proanthocyanidins Salivary Proline-Rich Proteins Tannins procyanidin 4852-22-6 Catechin 8R1V1STN48
Beschreibung
Zusammenfassung:While the definition of tannins has been historically associated with its propensity to bind proteins in a nonspecific way, it is now admitted that specific interaction also occurs. The case of the astringency perception is a good example to illustrate this phenomenon: astringency is commonly described as a tactile sensation induced by the precipitation of a complex composed of proline-rich proteins present in the human saliva and tannins present in beverages such as tea or red wines. In the present work, the interactions between a human saliva protein segment and three different procyanidins (B1, B3, and C2) were investigated at the atomic level by NMR and molecular dynamics. The data provided evidence for (i) an increase in affinity compared to shortest human saliva peptides, which is accounted for by protein "wraping around" the tannin, (ii) a specificity in the interaction below tannin critical micelle concentration (CMC) of ca. 10 mM, with an affinity scale such that C2 > B1 > B3, and (iii) a nonspecific binding above tannin CMC that conducts irremediably to the precipitation of the tannins/protein complex. Such physicochemical findings describe in accurate terms saliva protein-tannin interactions and provide support for a more subtle description by oenologists of wine astringency perception in the mouth
Beschreibung:Date Completed 23.05.2013
Date Revised 21.11.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la303964m