Wavelet Bayesian network image denoising

From the perspective of the Bayesian approach, the denoising problem is essentially a prior probability modeling and estimation task. In this paper, we propose an approach that exploits a hidden Bayesian network, constructed from wavelet coefficients, to model the prior probability of the original i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 4 vom: 21. Apr., Seite 1277-90
1. Verfasser: Ho, Jinn (VerfasserIn)
Weitere Verfasser: Hwang, Wen-Liang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM221358994
003 DE-627
005 20231224051652.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2220150  |2 doi 
028 5 2 |a pubmed24n0738.xml 
035 |a (DE-627)NLM221358994 
035 |a (NLM)23014750 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ho, Jinn  |e verfasserin  |4 aut 
245 1 0 |a Wavelet Bayesian network image denoising 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.07.2013 
500 |a Date Revised 08.02.2013 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a From the perspective of the Bayesian approach, the denoising problem is essentially a prior probability modeling and estimation task. In this paper, we propose an approach that exploits a hidden Bayesian network, constructed from wavelet coefficients, to model the prior probability of the original image. Then, we use the belief propagation (BP) algorithm, which estimates a coefficient based on all the coefficients of an image, as the maximum-a-posterior (MAP) estimator to derive the denoised wavelet coefficients. We show that if the network is a spanning tree, the standard BP algorithm can perform MAP estimation efficiently. Our experiment results demonstrate that, in terms of the peak-signal-to-noise-ratio and perceptual quality, the proposed approach outperforms state-of-the-art algorithms on several images, particularly in the textured regions, with various amounts of white Gaussian noise 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Hwang, Wen-Liang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 4 vom: 21. Apr., Seite 1277-90  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:4  |g day:21  |g month:04  |g pages:1277-90 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2220150  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 4  |b 21  |c 04  |h 1277-90