Wavelet Bayesian network image denoising

From the perspective of the Bayesian approach, the denoising problem is essentially a prior probability modeling and estimation task. In this paper, we propose an approach that exploits a hidden Bayesian network, constructed from wavelet coefficients, to model the prior probability of the original i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 4 vom: 21. Apr., Seite 1277-90
1. Verfasser: Ho, Jinn (VerfasserIn)
Weitere Verfasser: Hwang, Wen-Liang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:From the perspective of the Bayesian approach, the denoising problem is essentially a prior probability modeling and estimation task. In this paper, we propose an approach that exploits a hidden Bayesian network, constructed from wavelet coefficients, to model the prior probability of the original image. Then, we use the belief propagation (BP) algorithm, which estimates a coefficient based on all the coefficients of an image, as the maximum-a-posterior (MAP) estimator to derive the denoised wavelet coefficients. We show that if the network is a spanning tree, the standard BP algorithm can perform MAP estimation efficiently. Our experiment results demonstrate that, in terms of the peak-signal-to-noise-ratio and perceptual quality, the proposed approach outperforms state-of-the-art algorithms on several images, particularly in the textured regions, with various amounts of white Gaussian noise
Beschreibung:Date Completed 22.07.2013
Date Revised 08.02.2013
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2012.2220150