Point-based manifold harmonics

This paper proposes an algorithm to build a set of orthogonal Point-Based Manifold Harmonic Bases (PB-MHB) for spectral analysis over point-sampled manifold surfaces. To ensure that PB-MHB are orthogonal to each other, it is necessary to have symmetrizable discrete Laplace-Beltrami Operator (LBO) ov...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 18(2012), 10 vom: 08. Okt., Seite 1693-703
1. Verfasser: Liu, Yang (VerfasserIn)
Weitere Verfasser: Prabhakaran, Balakrishnan, Guo, Xiaohu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM220110689
003 DE-627
005 20231224044556.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2011.152  |2 doi 
028 5 2 |a pubmed24n0733.xml 
035 |a (DE-627)NLM220110689 
035 |a (NLM)22879345 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Yang  |e verfasserin  |4 aut 
245 1 0 |a Point-based manifold harmonics 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.02.2013 
500 |a Date Revised 10.08.2012 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper proposes an algorithm to build a set of orthogonal Point-Based Manifold Harmonic Bases (PB-MHB) for spectral analysis over point-sampled manifold surfaces. To ensure that PB-MHB are orthogonal to each other, it is necessary to have symmetrizable discrete Laplace-Beltrami Operator (LBO) over the surfaces. Existing converging discrete LBO for point clouds, as proposed by Belkin et al., is not guaranteed to be symmetrizable. We build a new point-wisely discrete LBO over the point-sampled surface that is guaranteed to be symmetrizable, and prove its convergence. By solving the eigen problem related to the new operator, we define a set of orthogonal bases over the point cloud. Experiments show that the new operator is converging better than other symmetrizable discrete Laplacian operators (such as graph Laplacian) defined on point-sampled surfaces, and can provide orthogonal bases for further spectral geometric analysis and processing tasks 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Prabhakaran, Balakrishnan  |e verfasserin  |4 aut 
700 1 |a Guo, Xiaohu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 18(2012), 10 vom: 08. Okt., Seite 1693-703  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:18  |g year:2012  |g number:10  |g day:08  |g month:10  |g pages:1693-703 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2011.152  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 18  |j 2012  |e 10  |b 08  |c 10  |h 1693-703