Point-based manifold harmonics

This paper proposes an algorithm to build a set of orthogonal Point-Based Manifold Harmonic Bases (PB-MHB) for spectral analysis over point-sampled manifold surfaces. To ensure that PB-MHB are orthogonal to each other, it is necessary to have symmetrizable discrete Laplace-Beltrami Operator (LBO) ov...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 18(2012), 10 vom: 08. Okt., Seite 1693-703
1. Verfasser: Liu, Yang (VerfasserIn)
Weitere Verfasser: Prabhakaran, Balakrishnan, Guo, Xiaohu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:This paper proposes an algorithm to build a set of orthogonal Point-Based Manifold Harmonic Bases (PB-MHB) for spectral analysis over point-sampled manifold surfaces. To ensure that PB-MHB are orthogonal to each other, it is necessary to have symmetrizable discrete Laplace-Beltrami Operator (LBO) over the surfaces. Existing converging discrete LBO for point clouds, as proposed by Belkin et al., is not guaranteed to be symmetrizable. We build a new point-wisely discrete LBO over the point-sampled surface that is guaranteed to be symmetrizable, and prove its convergence. By solving the eigen problem related to the new operator, we define a set of orthogonal bases over the point cloud. Experiments show that the new operator is converging better than other symmetrizable discrete Laplacian operators (such as graph Laplacian) defined on point-sampled surfaces, and can provide orthogonal bases for further spectral geometric analysis and processing tasks
Beschreibung:Date Completed 27.02.2013
Date Revised 10.08.2012
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2011.152