Modeling negative cooperativity in streptavidin adsorption onto biotinylated microtubules
The nanoscale architecture of binding sites can result in complex binding kinetics. Here, the adsorption of streptavidin and neutravidin to biotinylated microtubules is found to exhibit negative cooperativity due to electrostatic interactions and steric hindrance. This behavior is modeled by a newly...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1999. - 28(2012), 29 vom: 24. Juli, Seite 10635-9 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2012
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. neutravidin Avidin 1405-69-2 Biotin 6SO6U10H04 Streptavidin 9013-20-1 |
Zusammenfassung: | The nanoscale architecture of binding sites can result in complex binding kinetics. Here, the adsorption of streptavidin and neutravidin to biotinylated microtubules is found to exhibit negative cooperativity due to electrostatic interactions and steric hindrance. This behavior is modeled by a newly developed kinetic analogue of the Fowler-Guggenheim adsorption model. The complex adsorption kinetics of streptavidin to biotinylated structures needs to be considered when these intermolecular bonds are employed in self-assembly and nanobiotechnology |
---|---|
Beschreibung: | Date Completed 30.11.2012 Date Revised 21.11.2013 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la302034h |