Multiplicative noise removal via a learned dictionary

Multiplicative noise removal is a challenging image processing problem, and most existing methods are based on the maximum a posteriori formulation and the logarithmic transformation of multiplicative denoising problems into additive denoising problems. Sparse representations of images have shown to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 11 vom: 02. Nov., Seite 4534-43
1. Verfasser: Huang, Yu-Mei (VerfasserIn)
Weitere Verfasser: Moisan, Lionel, Ng, Michael K, Zeng, Tieyong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM218954123
003 DE-627
005 20231224041736.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2205007  |2 doi 
028 5 2 |a pubmed24n0730.xml 
035 |a (DE-627)NLM218954123 
035 |a (NLM)22736646 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Yu-Mei  |e verfasserin  |4 aut 
245 1 0 |a Multiplicative noise removal via a learned dictionary 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.03.2013 
500 |a Date Revised 18.10.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multiplicative noise removal is a challenging image processing problem, and most existing methods are based on the maximum a posteriori formulation and the logarithmic transformation of multiplicative denoising problems into additive denoising problems. Sparse representations of images have shown to be efficient approaches for image recovery. Following this idea, in this paper, we propose to learn a dictionary from the logarithmic transformed image, and then to use it in a variational model built for noise removal. Extensive experimental results suggest that in terms of visual quality, peak signal-to-noise ratio, and mean absolute deviation error, the proposed algorithm outperforms state-of-the-art methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Moisan, Lionel  |e verfasserin  |4 aut 
700 1 |a Ng, Michael K  |e verfasserin  |4 aut 
700 1 |a Zeng, Tieyong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 11 vom: 02. Nov., Seite 4534-43  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:11  |g day:02  |g month:11  |g pages:4534-43 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2205007  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 11  |b 02  |c 11  |h 4534-43