Multiplicative noise removal via a learned dictionary

Multiplicative noise removal is a challenging image processing problem, and most existing methods are based on the maximum a posteriori formulation and the logarithmic transformation of multiplicative denoising problems into additive denoising problems. Sparse representations of images have shown to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 11 vom: 02. Nov., Seite 4534-43
1. Verfasser: Huang, Yu-Mei (VerfasserIn)
Weitere Verfasser: Moisan, Lionel, Ng, Michael K, Zeng, Tieyong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Multiplicative noise removal is a challenging image processing problem, and most existing methods are based on the maximum a posteriori formulation and the logarithmic transformation of multiplicative denoising problems into additive denoising problems. Sparse representations of images have shown to be efficient approaches for image recovery. Following this idea, in this paper, we propose to learn a dictionary from the logarithmic transformed image, and then to use it in a variational model built for noise removal. Extensive experimental results suggest that in terms of visual quality, peak signal-to-noise ratio, and mean absolute deviation error, the proposed algorithm outperforms state-of-the-art methods
Beschreibung:Date Completed 18.03.2013
Date Revised 18.10.2012
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2012.2205007