Visual classification with multitask joint sparse representation

We address the problem of visual classification with multiple features and/or multiple instances. Motivated by the recent success of multitask joint covariate selection, we formulate this problem as a multitask joint sparse representation model to combine the strength of multiple features and/or ins...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 10 vom: 02. Okt., Seite 4349-60
1. Verfasser: Yuan, Xiao-Tong (VerfasserIn)
Weitere Verfasser: Liu, Xiaobai, Yan, Shuicheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM218954093
003 DE-627
005 20231224041736.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0730.xml 
035 |a (DE-627)NLM218954093 
035 |a (NLM)22736645 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yuan, Xiao-Tong  |e verfasserin  |4 aut 
245 1 0 |a Visual classification with multitask joint sparse representation 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.02.2013 
500 |a Date Revised 21.09.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We address the problem of visual classification with multiple features and/or multiple instances. Motivated by the recent success of multitask joint covariate selection, we formulate this problem as a multitask joint sparse representation model to combine the strength of multiple features and/or instances for recognition. A joint sparsity-inducing norm is utilized to enforce class-level joint sparsity patterns among the multiple representation vectors. The proposed model can be efficiently optimized by a proximal gradient method. Furthermore, we extend our method to the setup where features are described in kernel matrices. We then investigate into two applications of our method to visual classification: 1) fusing multiple kernel features for object categorization and 2) robust face recognition in video with an ensemble of query images. Extensive experiments on challenging real-world data sets demonstrate that the proposed method is competitive to the state-of-the-art methods in respective applications 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Liu, Xiaobai  |e verfasserin  |4 aut 
700 1 |a Yan, Shuicheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 10 vom: 02. Okt., Seite 4349-60  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:10  |g day:02  |g month:10  |g pages:4349-60 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 10  |b 02  |c 10  |h 4349-60