Visual classification with multitask joint sparse representation

We address the problem of visual classification with multiple features and/or multiple instances. Motivated by the recent success of multitask joint covariate selection, we formulate this problem as a multitask joint sparse representation model to combine the strength of multiple features and/or ins...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 10 vom: 02. Okt., Seite 4349-60
1. Verfasser: Yuan, Xiao-Tong (VerfasserIn)
Weitere Verfasser: Liu, Xiaobai, Yan, Shuicheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:We address the problem of visual classification with multiple features and/or multiple instances. Motivated by the recent success of multitask joint covariate selection, we formulate this problem as a multitask joint sparse representation model to combine the strength of multiple features and/or instances for recognition. A joint sparsity-inducing norm is utilized to enforce class-level joint sparsity patterns among the multiple representation vectors. The proposed model can be efficiently optimized by a proximal gradient method. Furthermore, we extend our method to the setup where features are described in kernel matrices. We then investigate into two applications of our method to visual classification: 1) fusing multiple kernel features for object categorization and 2) robust face recognition in video with an ensemble of query images. Extensive experiments on challenging real-world data sets demonstrate that the proposed method is competitive to the state-of-the-art methods in respective applications
Beschreibung:Date Completed 11.02.2013
Date Revised 21.09.2012
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042