Facile method for the preparation of water dispersible graphene using sulfonated poly(ether-ether-ketone) and its application as energy storage materials

A simple and effective method for the preparation of water dispersible graphene using sulfonated poly(ether-ether-ketone) (SPEEK) has been described. The SPEEK macromolecules are noncovalently adsorbed on the surface of graphene through π-π interactions. The SPEEK-modified graphene (SPG) forms an aq...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 25 vom: 26. Juni, Seite 9825-33
1. Verfasser: Kuila, Tapas (VerfasserIn)
Weitere Verfasser: Mishra, Ananta Kumar, Khanra, Partha, Kim, Nam Hoon, Uddin, Md Elias, Lee, Joong Hee
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:A simple and effective method for the preparation of water dispersible graphene using sulfonated poly(ether-ether-ketone) (SPEEK) has been described. The SPEEK macromolecules are noncovalently adsorbed on the surface of graphene through π-π interactions. The SPEEK-modified graphene (SPG) forms an aqueous dispersion that is stable for more than six months. An analysis of the ultraviolet-visible spectra shows that the aqueous dispersion of SPG obeys Beer's law and the molar extinction coefficient has been found to be 149.03 mL mg(-1) cm(-1). Fourier transform infrared, Raman, and X-ray photoelectron spectroscopy analyses confirm successful reduction and surface modification of graphene. An atomic force microscopy (AFM) analysis reveals the formation of a single layer of functionalized graphene. Transmission electron microscopy results are also in good agreement with the AFM analysis and support the formation of single-layer graphene. SPG shows good electrochemical cyclic stability during cyclic voltammetry and charge/discharge process when used as a supercapacitor electrode. A specific capacitance of 476 F g(-1) at a current density of 6.6 A g(-1) is observed for SPG materials
Beschreibung:Date Completed 31.10.2012
Date Revised 26.06.2012
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la301469u