Solvothermal synthesis of zincblende and wurtzite CuInS2 nanocrystals and their photovoltaic application

We report a simple solvothermal synthesis approach to the growth of CuInS(2) nanocrystals with zincblende- and wurtzite-phase structures. Zincblende nanocrystals with particle sizes of 10-20 nm were produced using oleylamine as the solvent. When ethylenediamine was used as the solvent, similarly siz...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 22 vom: 05. Juni, Seite 8496-501
1. Verfasser: Huang, Wan-Chen (VerfasserIn)
Weitere Verfasser: Tseng, Chih-Hsiao, Chang, Shu-Hao, Tuan, Hsing-Yu, Chiang, Chien-Chih, Lyu, Lian-Ming, Huang, Michael H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We report a simple solvothermal synthesis approach to the growth of CuInS(2) nanocrystals with zincblende- and wurtzite-phase structures. Zincblende nanocrystals with particle sizes of 10-20 nm were produced using oleylamine as the solvent. When ethylenediamine was used as the solvent, similarly sized wurtzite nanocrystals with some degree of particle aggregation were formed. Use of a mixture of these solvents gave products with mixed phases including some polyhedral nanostructures. The crystal phases of these nanocrystals were carefully determined by X-ray diffraction and transmission electron microscopy analysis. All the samples exhibit strong absorption from the entire visible light region to the near-infrared region beyond 1300 nm. Pure-phase zincblende and wurtzite CuInS(2) nanocrystals were employed as ink in the fabrication of solar cells. The spray-coated nanocrystal layer was subjected to a selenization process. A power conversion efficiency of ~0.74% and a good external quantum efficiency profile over broad wavelengths have been measured. The results demonstrate that wurtzite and zincblende CuInS(2) nanocrystals may be attractive precursors to light-absorbing materials for making efficient photovoltaic devices
Beschreibung:Date Completed 06.09.2012
Date Revised 05.06.2012
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la300742p