Synthesis and catalysis of location-specific cobalt nanoparticles supported by multiwall carbon nanotubes for Fischer-Tropsch synthesis
Cobalt nanoparticles located on the concave internal surface of multiwalled carbon nanotubes (Co-in-MW-CNTs) and the convex external surface of MW-CNTs (Co-on-MW-CNTs) were synthesized. Their catalytic performances in Fischer-Tropsch synthesis (FTS) were investigated. A correlation between the locat...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 21 vom: 29. Mai, Seite 8275-80 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2012
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Cobalt nanoparticles located on the concave internal surface of multiwalled carbon nanotubes (Co-in-MW-CNTs) and the convex external surface of MW-CNTs (Co-on-MW-CNTs) were synthesized. Their catalytic performances in Fischer-Tropsch synthesis (FTS) were investigated. A correlation between the location, pretreatment, and surface chemistry of the cobalt nanoparticles and the catalytic selectivity in FTS was built. It is found that the selectivity in production of C(5+) molecules through FTS on cobalt catalysts supported by MW-CNTs depends on activation temperatures and surface chemistry of the cobalt nanoparticles. A pretreatment at 300 °C in H(2) flow results in a different surface chemistry for Co-in-MW-CNTs than for Co-on-MW-CNTs, which leads to a difference in selectvity to the production of C(5+) molecules. Pretreatment at a relatively high temperature, 400 °C, in H(2) flow produces completely reduced Co nanoparticles in Co-in-MW-CNTs and Co-on-MW-CNTs. There is no signifcant difference in catalytic selectivity between the two catalysts upon pretreatment at 400 °C. The absence of a significant difference in catalytic selectivity of metallic Co-on-MW-CNTs and metallic Co-in-MW-CNTs suggests that the electronic effect of the MW-CNT support does not significantly affect the C(5+) selectivity of cobalt catalysts in FTS |
---|---|
Beschreibung: | Date Completed 21.09.2012 Date Revised 29.05.2012 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la300607k |