Optimized data fusion for kernel k-means clustering

This paper presents a novel optimized kernel k-means algorithm (OKKC) to combine multiple data sources for clustering analysis. The algorithm uses an alternating minimization framework to optimize the cluster membership and kernel coefficients as a nonconvex problem. In the proposed algorithm, the p...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 5 vom: 15. Mai, Seite 1031-9
Auteur principal: Yu, Shi (Auteur)
Autres auteurs: Tranchevent, Léon-Charles, Liu, Xinhai, Glänzel, Wolfgang, Suykens, Johan A K, De Moor, Bart, Moreau, Yves
Format: Article en ligne
Langue:English
Publié: 2012
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't