|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM216007798 |
003 |
DE-627 |
005 |
20231224030752.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2012 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la300315r
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0720.xml
|
035 |
|
|
|a (DE-627)NLM216007798
|
035 |
|
|
|a (NLM)22397583
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Thyparambil, Aby A
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Determination of peptide-surface adsorption free energy for material surfaces not conducive to SPR or QCM using AFM
|
264 |
|
1 |
|c 2012
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 07.08.2012
|
500 |
|
|
|a Date Revised 21.10.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The interactions between peptides and proteins with material surfaces are of primary importance in many areas of biotechnology. While surface plasmon resonance spectroscopy (SPR) and quartz crystal microbalance (QCM) methods have proven to be very useful in measuring fundamental properties characterizing adsorption behavior, such as the free energy of adsorption for peptide-surface interactions, these methods are largely restricted to use for materials that can readily form nanoscale-thick films over the respective sensor surfaces. Many materials including most polymers, ceramics, and inorganic glasses, however, are not readily suitable for use with SPR or QCM methods. To overcome these limitations, we recently showed that desorption forces (F(des)) obtained using a standardized AFM method linearly correlate to standard-state adsorption free energy values (ΔG°(ads)) measured from SPR in phosphate buffered saline (PBS: phosphate buffered 140 mM NaCl, pH 7.4). This approach thus provides a means to determine ΔG°(ads) for peptide adsorption using AFM that can be applied to any flat material surface. In this present study, we investigated the F(des)-ΔG°(ads) correlation between AFM and SPR data in PBS for a much broader range of systems including eight different types of peptides on a set of eight different alkanethiol self-assembled monolayer (SAM) surfaces. The resulting correlation was then used to estimate ΔG°(ads) from F(des) determined by AFM for selected bulk polymer and glass/ceramic materials such as poly(methyl methacrylate) (PMMA), high-density polyethylene (HDPE), fused silica glass, and a quartz (100) surface. The results of these studies support our previous findings regarding the strong correlation between F(des) measured by AFM and ΔG°(ads) determined by SPR, and provides a means to estimate ΔG°(ads) for peptide adsorption on macroscopically thick samples of materials that are not conducive for use with SPR or QCM
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, N.I.H., Extramural
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
7 |
|a Buffers
|2 NLM
|
650 |
|
7 |
|a Peptides
|2 NLM
|
700 |
1 |
|
|a Wei, Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Latour, Robert A
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 28(2012), 13 vom: 03. Apr., Seite 5687-94
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:28
|g year:2012
|g number:13
|g day:03
|g month:04
|g pages:5687-94
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la300315r
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 28
|j 2012
|e 13
|b 03
|c 04
|h 5687-94
|