Determination of peptide-surface adsorption free energy for material surfaces not conducive to SPR or QCM using AFM

The interactions between peptides and proteins with material surfaces are of primary importance in many areas of biotechnology. While surface plasmon resonance spectroscopy (SPR) and quartz crystal microbalance (QCM) methods have proven to be very useful in measuring fundamental properties character...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 13 vom: 03. Apr., Seite 5687-94
1. Verfasser: Thyparambil, Aby A (VerfasserIn)
Weitere Verfasser: Wei, Yang, Latour, Robert A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Buffers Peptides
Beschreibung
Zusammenfassung:The interactions between peptides and proteins with material surfaces are of primary importance in many areas of biotechnology. While surface plasmon resonance spectroscopy (SPR) and quartz crystal microbalance (QCM) methods have proven to be very useful in measuring fundamental properties characterizing adsorption behavior, such as the free energy of adsorption for peptide-surface interactions, these methods are largely restricted to use for materials that can readily form nanoscale-thick films over the respective sensor surfaces. Many materials including most polymers, ceramics, and inorganic glasses, however, are not readily suitable for use with SPR or QCM methods. To overcome these limitations, we recently showed that desorption forces (F(des)) obtained using a standardized AFM method linearly correlate to standard-state adsorption free energy values (ΔG°(ads)) measured from SPR in phosphate buffered saline (PBS: phosphate buffered 140 mM NaCl, pH 7.4). This approach thus provides a means to determine ΔG°(ads) for peptide adsorption using AFM that can be applied to any flat material surface. In this present study, we investigated the F(des)-ΔG°(ads) correlation between AFM and SPR data in PBS for a much broader range of systems including eight different types of peptides on a set of eight different alkanethiol self-assembled monolayer (SAM) surfaces. The resulting correlation was then used to estimate ΔG°(ads) from F(des) determined by AFM for selected bulk polymer and glass/ceramic materials such as poly(methyl methacrylate) (PMMA), high-density polyethylene (HDPE), fused silica glass, and a quartz (100) surface. The results of these studies support our previous findings regarding the strong correlation between F(des) measured by AFM and ΔG°(ads) determined by SPR, and provides a means to estimate ΔG°(ads) for peptide adsorption on macroscopically thick samples of materials that are not conducive for use with SPR or QCM
Beschreibung:Date Completed 07.08.2012
Date Revised 21.10.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la300315r