Ab initio thermodynamics examination of sulfur species present on Rh, Ni, and binary Rh-Ni surfaces under steam reforming reaction conditions

The stable form of adsorbed sulfur species and their coverage were investigated on Rh, Ni, and Rh-Ni binary metal surfaces using density functional theory calculations and the ab initio thermodynamics framework. S adsorption, SO(x) (x = 1-4) adsorption, and metal sulfide formation were examined on R...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 13 vom: 03. Apr., Seite 5660-8
1. Verfasser: Lee, Kyungtae (VerfasserIn)
Weitere Verfasser: Song, Chunshan, Janik, Michael J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The stable form of adsorbed sulfur species and their coverage were investigated on Rh, Ni, and Rh-Ni binary metal surfaces using density functional theory calculations and the ab initio thermodynamics framework. S adsorption, SO(x) (x = 1-4) adsorption, and metal sulfide formation were examined on Rh(111) and Ni(111) pure metals. Both Rh and Ni metals showed a preference for S surface adsorption rather than SO(x) adsorption under steam reforming conditions. The transition temperature from a clean surface (<(1)/(9) ML) to S adsorption was identified on Rh(111), Ni(111), Rh(1)Ni(2)(111), and Rh(2)Ni(1)(111) metals at various P(H(2))/P(H(2)S) ratios. Bimetallic Rh-Ni metals transition to a clean surface at lower temperatures than does the pure Rh metal. Whereas Rh is covered with (1)/(3) ML of sulfur under the reforming conditions of 4-100 ppm S and 800 °C, Rh(1)Ni(2) is covered with (1)/(9) ML of sulfur at the lower end of this range (4-33 ppm S). The possibility of sulfate formation on Rh catalysts was examined by considering higher oxygen pressures, a Rh(221) stepped surface, and the interface between a Rh(4) cluster and CeO(2)(111) surface. SO(x) surface species are stable only at high oxygen pressure or low temperatures outside those relevant to the steam reforming of hydrocarbons
Beschreibung:Date Completed 07.08.2012
Date Revised 03.04.2012
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la300129z