Adsorption and detection of sport doping drugs on metallic plasmonic nanoparticles of different morphology
A comparative study of different plasmonic nanoparticles with different morphologies (nanospheres and triangular nanoprisms) and metals (Ag and Au) was done in this work and applied to the ultrasensitive detection of aminoglutethimide (AGI) drug by surface enhanced Raman spectroscopy (SERS) and plas...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 24 vom: 19. Juni, Seite 8891-901 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2012
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Aminoglutethimide 0O54ZQ14I9 Silver 3M4G523W1G Gold 7440-57-5 |
Zusammenfassung: | A comparative study of different plasmonic nanoparticles with different morphologies (nanospheres and triangular nanoprisms) and metals (Ag and Au) was done in this work and applied to the ultrasensitive detection of aminoglutethimide (AGI) drug by surface enhanced Raman spectroscopy (SERS) and plasmon resonance. AGI is an aromatase inhibitor used as an antitumoral drug with remarkable pharmacological interest and also in illegal sport doping. The application of very sensitive spectroscopic techniques based on the localization of an electromagnetic field on plasmonic nanoparticles confirms the previous study of the adsorption of drugs onto a metal surface due to the near field character of these techniques. The adsorption of AGI on the above substrates was investigated at different pH values and surface coverages, and the results were analyzed on the basis of AGI/metal affinity, considering the interaction mechanism, the existence of two binding sites in AGI, and the influence of the interface on the adsorption in terms of surface charge due to the presence of other ions linked to the surface. Finally, a comparative quantitative detection of AGI was performed on both spherical and triangular nanoprism nanoparticles, and a limit of detection lower than those reported so far was deduced on the latter nanoparticles |
---|---|
Beschreibung: | Date Completed 23.10.2012 Date Revised 21.11.2013 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la300194v |