Protein-protein interactions as a proxy to monitor conformational changes and activation states of the tomato resistance protein I-2

Plant resistance proteins (R) are involved in pathogen recognition and subsequent initiation of defence responses. Their activity is regulated by inter- and intramolecular interactions. In a yeast two-hybrid screen two clones (I2I-1 and I2I-2) specifically interacting with I-2, a Fusarium oxysporum...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 63(2012), 8 vom: 15. Mai, Seite 3047-60
1. Verfasser: Lukasik-Shreepaathy, Ewa (VerfasserIn)
Weitere Verfasser: Vossen, Jack H, Tameling, Wladimir I L, de Vroomen, Marianne J, Cornelissen, Ben J C, Takken, Frank L W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Mutant Proteins Plant Proteins
Beschreibung
Zusammenfassung:Plant resistance proteins (R) are involved in pathogen recognition and subsequent initiation of defence responses. Their activity is regulated by inter- and intramolecular interactions. In a yeast two-hybrid screen two clones (I2I-1 and I2I-2) specifically interacting with I-2, a Fusarium oxysporum f. sp. lycopersici resistance protein of the CC-NB-LRR family, were identified. Sequence analysis revealed that I2I-1 belongs to the Formin gene family (SlFormin) whereas I2I-2 has homology to translin-associated protein X (SlTrax). SlFormin required only the N-terminal CC I-2 domain for binding, whereas SlTrax required both I-2 CC and part of the NB-ARC domain. Tomato plants stably silenced for these interactors were not compromised in I-2-mediated disease resistance. When extended or mutated forms of I-2 were used as baits, distinct and often opposite, interaction patterns with the two interactors were observed. These interaction patterns correlated with the proposed activation state of I-2 implying that active and inactive R proteins adopt distinct conformations. It is concluded that the yeast two hybrid system can be used as a proxy to monitor these different conformational states
Beschreibung:Date Completed 07.09.2012
Date Revised 07.12.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/ers021