DEEP-differential evolution entirely parallel method for gene regulatory networks

The Differential Evolution Entirely Parallel (DEEP) method is applied to the biological data fitting problem. We introduce a new migration scheme, in which the best member of the branch substitutes the oldest member of the next branch that provides a high speed of the algorithm convergence. We analy...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing. - 1998. - 57(2011), 2 vom: 01. Jan., Seite 172-178
1. Verfasser: Kozlov, Konstantin (VerfasserIn)
Weitere Verfasser: Samsonov, Alexander
Format: Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:The Journal of supercomputing
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM214358690
003 DE-627
005 20250714194836.0
007 tu
008 231224s2011 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n1432.xml 
035 |a (DE-627)NLM214358690 
035 |a (NLM)22223930 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kozlov, Konstantin  |e verfasserin  |4 aut 
245 1 0 |a DEEP-differential evolution entirely parallel method for gene regulatory networks 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 29.05.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The Differential Evolution Entirely Parallel (DEEP) method is applied to the biological data fitting problem. We introduce a new migration scheme, in which the best member of the branch substitutes the oldest member of the next branch that provides a high speed of the algorithm convergence. We analyze the performance and efficiency of the developed algorithm on a test problem of finding the regulatory interactions within the network of gap genes that control the development of early Drosophila embryo. The parameters of a set of nonlinear differential equations are determined by minimizing the total error between the model behavior and experimental observations. The age of the individuum is defined by the number of iterations this individuum survived without changes. We used a ring topology for the network of computational nodes. The computer codes are available upon request 
650 4 |a Journal Article 
700 1 |a Samsonov, Alexander  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The Journal of supercomputing  |d 1998  |g 57(2011), 2 vom: 01. Jan., Seite 172-178  |w (DE-627)NLM098252410  |x 0920-8542  |7 nnas 
773 1 8 |g volume:57  |g year:2011  |g number:2  |g day:01  |g month:01  |g pages:172-178 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 57  |j 2011  |e 2  |b 01  |c 01  |h 172-178