Incremental activity modeling in multiple disjoint cameras

Activity modeling and unusual event detection in a network of cameras is challenging, particularly when the camera views are not overlapped. We show that it is possible to detect unusual events in multiple disjoint cameras as context-incoherent patterns through incremental learning of time delayed d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 9 vom: 10. Sept., Seite 1799-813
1. Verfasser: Loy, Chen Change (VerfasserIn)
Weitere Verfasser: Xiang, Tao, Gong, Shaogang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM213994496
003 DE-627
005 20231224022710.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0713.xml 
035 |a (DE-627)NLM213994496 
035 |a (NLM)22184260 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Loy, Chen Change  |e verfasserin  |4 aut 
245 1 0 |a Incremental activity modeling in multiple disjoint cameras 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.02.2013 
500 |a Date Revised 01.11.2012 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Activity modeling and unusual event detection in a network of cameras is challenging, particularly when the camera views are not overlapped. We show that it is possible to detect unusual events in multiple disjoint cameras as context-incoherent patterns through incremental learning of time delayed dependencies between distributed local activities observed within and across camera views. Specifically, we model multicamera activities using a Time Delayed Probabilistic Graphical Model (TD-PGM) with different nodes representing activities in different decomposed regions from different views and the directed links between nodes encoding their time delayed dependencies. To deal with visual context changes, we formulate a novel incremental learning method for modeling time delayed dependencies that change over time. We validate the effectiveness of the proposed approach using a synthetic data set and videos captured from a camera network installed at a busy underground station 
650 4 |a Journal Article 
700 1 |a Xiang, Tao  |e verfasserin  |4 aut 
700 1 |a Gong, Shaogang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 9 vom: 10. Sept., Seite 1799-813  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:9  |g day:10  |g month:09  |g pages:1799-813 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 9  |b 10  |c 09  |h 1799-813