Incremental activity modeling in multiple disjoint cameras

Activity modeling and unusual event detection in a network of cameras is challenging, particularly when the camera views are not overlapped. We show that it is possible to detect unusual events in multiple disjoint cameras as context-incoherent patterns through incremental learning of time delayed d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 9 vom: 10. Sept., Seite 1799-813
1. Verfasser: Loy, Chen Change (VerfasserIn)
Weitere Verfasser: Xiang, Tao, Gong, Shaogang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Activity modeling and unusual event detection in a network of cameras is challenging, particularly when the camera views are not overlapped. We show that it is possible to detect unusual events in multiple disjoint cameras as context-incoherent patterns through incremental learning of time delayed dependencies between distributed local activities observed within and across camera views. Specifically, we model multicamera activities using a Time Delayed Probabilistic Graphical Model (TD-PGM) with different nodes representing activities in different decomposed regions from different views and the directed links between nodes encoding their time delayed dependencies. To deal with visual context changes, we formulate a novel incremental learning method for modeling time delayed dependencies that change over time. We validate the effectiveness of the proposed approach using a synthetic data set and videos captured from a camera network installed at a busy underground station
Beschreibung:Date Completed 05.02.2013
Date Revised 01.11.2012
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539