UBoost : boosting with the Universum

It has been shown that the Universum data, which do not belong to either class of the classification problem of interest, may contain useful prior domain knowledge for training a classifier [1], [2]. In this work, we design a novel boosting algorithm that takes advantage of the available Universum d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 4 vom: 13. Apr., Seite 825-32
1. Verfasser: Shen, Chunhua (VerfasserIn)
Weitere Verfasser: Wang, Peng, Shen, Fumin, Wang, Hanzi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM21372894X
003 DE-627
005 20231224022154.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.240  |2 doi 
028 5 2 |a pubmed24n0712.xml 
035 |a (DE-627)NLM21372894X 
035 |a (NLM)22156096 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shen, Chunhua  |e verfasserin  |4 aut 
245 1 0 |a UBoost  |b boosting with the Universum 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.09.2012 
500 |a Date Revised 31.05.2012 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a It has been shown that the Universum data, which do not belong to either class of the classification problem of interest, may contain useful prior domain knowledge for training a classifier [1], [2]. In this work, we design a novel boosting algorithm that takes advantage of the available Universum data, hence the name UBoost. UBoost is a boosting implementation of Vapnik's alternative capacity concept to the large margin approach. In addition to the standard regularization term, UBoost also controls the learned model's capacity by maximizing the number of observed contradictions. Our experiments demonstrate that UBoost can deliver improved classification accuracy over standard boosting algorithms that use labeled data alone 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wang, Peng  |e verfasserin  |4 aut 
700 1 |a Shen, Fumin  |e verfasserin  |4 aut 
700 1 |a Wang, Hanzi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 4 vom: 13. Apr., Seite 825-32  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:4  |g day:13  |g month:04  |g pages:825-32 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.240  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 4  |b 13  |c 04  |h 825-32