UBoost : boosting with the Universum

It has been shown that the Universum data, which do not belong to either class of the classification problem of interest, may contain useful prior domain knowledge for training a classifier [1], [2]. In this work, we design a novel boosting algorithm that takes advantage of the available Universum d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 4 vom: 13. Apr., Seite 825-32
1. Verfasser: Shen, Chunhua (VerfasserIn)
Weitere Verfasser: Wang, Peng, Shen, Fumin, Wang, Hanzi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:It has been shown that the Universum data, which do not belong to either class of the classification problem of interest, may contain useful prior domain knowledge for training a classifier [1], [2]. In this work, we design a novel boosting algorithm that takes advantage of the available Universum data, hence the name UBoost. UBoost is a boosting implementation of Vapnik's alternative capacity concept to the large margin approach. In addition to the standard regularization term, UBoost also controls the learned model's capacity by maximizing the number of observed contradictions. Our experiments demonstrate that UBoost can deliver improved classification accuracy over standard boosting algorithms that use labeled data alone
Beschreibung:Date Completed 10.09.2012
Date Revised 31.05.2012
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2011.240