Flickr distance : a relationship measure for visual concepts

This paper proposes the Flickr Distance (FD) to measure the visual correlation between concepts. For each concept, a collection of related images are obtained from the Flickr website. We assume that each concept consists of several states, e.g., different views, different semantics, etc., which are...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 5 vom: 25. Mai, Seite 863-75
1. Verfasser: Wu, Lei (VerfasserIn)
Weitere Verfasser: Hua, Xian-Sheng, Yu, Nenghai, Ma, Wei-Ying, Li, Shipeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM212116649
003 DE-627
005 20231224014918.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.195  |2 doi 
028 5 2 |a pubmed24n0707.xml 
035 |a (DE-627)NLM212116649 
035 |a (NLM)21987557 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Lei  |e verfasserin  |4 aut 
245 1 0 |a Flickr distance  |b a relationship measure for visual concepts 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.09.2012 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper proposes the Flickr Distance (FD) to measure the visual correlation between concepts. For each concept, a collection of related images are obtained from the Flickr website. We assume that each concept consists of several states, e.g., different views, different semantics, etc., which are considered as latent topics. Then a latent topic visual language model (LTVLM) is built to capture these states. The Flickr distance between two concepts is defined as the Jensen-Shannon (J-S) divergence between their LTVLM. Differently from traditional conceptual distance measurements, which are based on Web textual documents, FD is based on the visual information. Comparing with the WordNet distance, FD can easily scale up with the increasing size of the conceptual corpus. Comparing with the Google Distance (NGD) and Tag Concurrence Distance (TCD), FD uses the visual information and can properly measure the conceptual relations. We apply FD to multimedia-related tasks and find methods based on FD significantly outperform those based on NGD and TCD. With the FD measurement, we also construct a large-scale visual conceptual network (VCNet) to store the knowledge of conceptual relationship. Experiments show that FD is more coherent to human cognition and it also outperforms text-based distances in real-world applications 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Hua, Xian-Sheng  |e verfasserin  |4 aut 
700 1 |a Yu, Nenghai  |e verfasserin  |4 aut 
700 1 |a Ma, Wei-Ying  |e verfasserin  |4 aut 
700 1 |a Li, Shipeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 5 vom: 25. Mai, Seite 863-75  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:5  |g day:25  |g month:05  |g pages:863-75 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.195  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 5  |b 25  |c 05  |h 863-75