Flickr distance : a relationship measure for visual concepts

This paper proposes the Flickr Distance (FD) to measure the visual correlation between concepts. For each concept, a collection of related images are obtained from the Flickr website. We assume that each concept consists of several states, e.g., different views, different semantics, etc., which are...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 5 vom: 25. Mai, Seite 863-75
1. Verfasser: Wu, Lei (VerfasserIn)
Weitere Verfasser: Hua, Xian-Sheng, Yu, Nenghai, Ma, Wei-Ying, Li, Shipeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:This paper proposes the Flickr Distance (FD) to measure the visual correlation between concepts. For each concept, a collection of related images are obtained from the Flickr website. We assume that each concept consists of several states, e.g., different views, different semantics, etc., which are considered as latent topics. Then a latent topic visual language model (LTVLM) is built to capture these states. The Flickr distance between two concepts is defined as the Jensen-Shannon (J-S) divergence between their LTVLM. Differently from traditional conceptual distance measurements, which are based on Web textual documents, FD is based on the visual information. Comparing with the WordNet distance, FD can easily scale up with the increasing size of the conceptual corpus. Comparing with the Google Distance (NGD) and Tag Concurrence Distance (TCD), FD uses the visual information and can properly measure the conceptual relations. We apply FD to multimedia-related tasks and find methods based on FD significantly outperform those based on NGD and TCD. With the FD measurement, we also construct a large-scale visual conceptual network (VCNet) to store the knowledge of conceptual relationship. Experiments show that FD is more coherent to human cognition and it also outperforms text-based distances in real-world applications
Beschreibung:Date Completed 04.09.2012
Date Revised 10.12.2019
published: Print
Citation Status MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2011.195