Effect of the β-propiolactone treatment on the adsorption and fusion of influenza A/Brisbane/59/2007 and A/New Caledonia/20/1999 virus H1N1 on a dimyristoylphosphatidylcholine/ganglioside GM3 mixed phospholipids monolayer at the air-water interface

The production protocol of many whole cell/virion vaccines involves an inactivation step with β-propiolactone (BPL). Despite the widespread use of BPL, its mechanism of action is poorly understood. Earlier work demonstrated that BPL alkylates nucleotide bases, but its interaction with proteins has n...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 22 vom: 15. Nov., Seite 13675-83
1. Verfasser: Desbat, Bernard (VerfasserIn)
Weitere Verfasser: Lancelot, Eloïse, Krell, Tino, Nicolaï, Marie-Claire, Vogel, Fred, Chevalier, Michel, Ronzon, Frédéric
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article G(M3) Ganglioside Water 059QF0KO0R Propiolactone 6RC3ZT4HB0 Dimyristoylphosphatidylcholine U86ZGC74V5
Beschreibung
Zusammenfassung:The production protocol of many whole cell/virion vaccines involves an inactivation step with β-propiolactone (BPL). Despite the widespread use of BPL, its mechanism of action is poorly understood. Earlier work demonstrated that BPL alkylates nucleotide bases, but its interaction with proteins has not been studied in depth. In the present study we use ellipsometry to analyze the influence of BPL treatment of two H1N1 influenza strains, A/Brisbane/59/2007 and A/New Caledonia/20/1999, which are used for vaccine production on an industrial scale. Analyses were conducted using a mixed lipid monolayer containing ganglioside GM3, which functions as the viral receptor. Our results show that BPL treatment of both strains reduces viral affinity for the mixed monolayer and also diminishes the capacity of viral domains to self-assemble. In another series of experiments, the pH of the subphase was reduced from 7.4 to 5 to provoke the pH-induced conformational change of hemagglutinin, which occurs following endocytosis into the endosome. In the presence of the native virus the pH decrease caused a reduction in domain size, whereas lipid layer thickness and surface pressure were increased. These observations are consistent with a fusion of the viral membrane with the lipid monolayer. Importantly, this fusion was not observed with adsorbed inactivated virus, which indicates that BPL treatment inhibits the first step of virus-membrane fusion. Our data also indicate that BPL chemically modifies hemagglutinin, which mediates the interaction with GM3
Beschreibung:Date Completed 06.03.2012
Date Revised 21.11.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la2027175