Completely automated multiresolution edge snapper--a new technique for an accurate carotid ultrasound IMT measurement : clinical validation and benchmarking on a multi-institutional database

The aim of this paper is to describe a novel and completely automated technique for carotid artery (CA) recognition, far (distal) wall segmentation, and intima-media thickness (IMT) measurement, which is a strong clinical tool for risk assessment for cardiovascular diseases. The architecture of comp...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 3 vom: 07. März, Seite 1211-22
1. Verfasser: Molinari, Filippo (VerfasserIn)
Weitere Verfasser: Pattichis, Constantinos S, Zeng, Guang, Saba, Luca, Acharya, U Rajendra, Sanfilippo, Roberto, Nicolaides, Andrew, Suri, Jasjit S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Validation Study
LEADER 01000naa a22002652 4500
001 NLM211752118
003 DE-627
005 20231224014221.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2011.2169270  |2 doi 
028 5 2 |a pubmed24n0706.xml 
035 |a (DE-627)NLM211752118 
035 |a (NLM)21947523 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Molinari, Filippo  |e verfasserin  |4 aut 
245 1 0 |a Completely automated multiresolution edge snapper--a new technique for an accurate carotid ultrasound IMT measurement  |b clinical validation and benchmarking on a multi-institutional database 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.07.2012 
500 |a Date Revised 10.12.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The aim of this paper is to describe a novel and completely automated technique for carotid artery (CA) recognition, far (distal) wall segmentation, and intima-media thickness (IMT) measurement, which is a strong clinical tool for risk assessment for cardiovascular diseases. The architecture of completely automated multiresolution edge snapper (CAMES) consists of the following two stages: 1) automated CA recognition based on a combination of scale-space and statistical classification in a multiresolution framework and 2) automated segmentation of lumen-intima (LI) and media-adventitia (MA) interfaces for the far (distal) wall and IMT measurement. Our database of 365 B-mode longitudinal carotid images is taken from four different institutions covering different ethnic backgrounds. The ground-truth (GT) database was the average manual segmentation from three clinical experts. The mean distance ± standard deviation of CAMES with respect to GT profiles for LI and MA interfaces were 0.081 ± 0.099 and 0.082 ± 0.197 mm, respectively. The IMT measurement error between CAMES and GT was 0.078 ± 0.112 mm. CAMES was benchmarked against a previously developed automated technique based on an integrated approach using feature-based extraction and classifier (CALEX). Although CAMES underestimated the IMT value, it had shown a strong improvement in segmentation errors against CALEX for LI and MA interfaces by 8% and 42%, respectively. The overall IMT measurement bias for CAMES improved by 36% against CALEX. Finally, this paper demonstrated that the figure-of-merit of CAMES was 95.8% compared with 87.4% for CALEX. The combination of multiresolution CA recognition and far-wall segmentation led to an automated, low-complexity, real-time, and accurate technique for carotid IMT measurement. Validation on a multiethnic/multi-institutional data set demonstrated the robustness of the technique, which can constitute a clinically valid IMT measurement for assistance in atherosclerosis disease management 
650 4 |a Journal Article 
650 4 |a Validation Study 
700 1 |a Pattichis, Constantinos S  |e verfasserin  |4 aut 
700 1 |a Zeng, Guang  |e verfasserin  |4 aut 
700 1 |a Saba, Luca  |e verfasserin  |4 aut 
700 1 |a Acharya, U Rajendra  |e verfasserin  |4 aut 
700 1 |a Sanfilippo, Roberto  |e verfasserin  |4 aut 
700 1 |a Nicolaides, Andrew  |e verfasserin  |4 aut 
700 1 |a Suri, Jasjit S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 3 vom: 07. März, Seite 1211-22  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:3  |g day:07  |g month:03  |g pages:1211-22 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2011.2169270  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 3  |b 07  |c 03  |h 1211-22