Completely automated multiresolution edge snapper--a new technique for an accurate carotid ultrasound IMT measurement : clinical validation and benchmarking on a multi-institutional database
The aim of this paper is to describe a novel and completely automated technique for carotid artery (CA) recognition, far (distal) wall segmentation, and intima-media thickness (IMT) measurement, which is a strong clinical tool for risk assessment for cardiovascular diseases. The architecture of comp...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 3 vom: 07. März, Seite 1211-22 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2012
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article Validation Study |
Zusammenfassung: | The aim of this paper is to describe a novel and completely automated technique for carotid artery (CA) recognition, far (distal) wall segmentation, and intima-media thickness (IMT) measurement, which is a strong clinical tool for risk assessment for cardiovascular diseases. The architecture of completely automated multiresolution edge snapper (CAMES) consists of the following two stages: 1) automated CA recognition based on a combination of scale-space and statistical classification in a multiresolution framework and 2) automated segmentation of lumen-intima (LI) and media-adventitia (MA) interfaces for the far (distal) wall and IMT measurement. Our database of 365 B-mode longitudinal carotid images is taken from four different institutions covering different ethnic backgrounds. The ground-truth (GT) database was the average manual segmentation from three clinical experts. The mean distance ± standard deviation of CAMES with respect to GT profiles for LI and MA interfaces were 0.081 ± 0.099 and 0.082 ± 0.197 mm, respectively. The IMT measurement error between CAMES and GT was 0.078 ± 0.112 mm. CAMES was benchmarked against a previously developed automated technique based on an integrated approach using feature-based extraction and classifier (CALEX). Although CAMES underestimated the IMT value, it had shown a strong improvement in segmentation errors against CALEX for LI and MA interfaces by 8% and 42%, respectively. The overall IMT measurement bias for CAMES improved by 36% against CALEX. Finally, this paper demonstrated that the figure-of-merit of CAMES was 95.8% compared with 87.4% for CALEX. The combination of multiresolution CA recognition and far-wall segmentation led to an automated, low-complexity, real-time, and accurate technique for carotid IMT measurement. Validation on a multiethnic/multi-institutional data set demonstrated the robustness of the technique, which can constitute a clinically valid IMT measurement for assistance in atherosclerosis disease management |
---|---|
Beschreibung: | Date Completed 03.07.2012 Date Revised 10.12.2019 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2011.2169270 |