Facile spray-drying assembly of uniform microencapsulates with tunable core-shell structures and controlled release properties
Microencapsulates with defined core-shell structures are of interest for applications, such as controlled release and encapsulation, because of the feasibility of fine-tuning individual functionalities of different parts. Here, we report a new approach for efficient and scalable production of such p...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 27(2011), 21 vom: 01. Nov., Seite 12910-5 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2011
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Acrylic Resins Capsules Coated Materials, Biocompatible Delayed-Action Preparations Silanes Water 059QF0KO0R Eudragit RS mehr... |
Zusammenfassung: | Microencapsulates with defined core-shell structures are of interest for applications, such as controlled release and encapsulation, because of the feasibility of fine-tuning individual functionalities of different parts. Here, we report a new approach for efficient and scalable production of such particles. Eudragit RS (a co-polymer of ethyl acrylate, methyl methacrylate, and a low content of methacrylic acid ester with quaternary ammonium groups) was used as the main shell component, with silica as the core component, formed upon a single-step spray-drying assembly. The method is capable of forming uniform core-shell particles from homogeneous precursors without the use of any organic solvents. Evaporation-induced self-assembly attained the phase separation among different components during drying, resulting in the core-shell spatial configuration, while precise control over particle uniformity was accomplished via a microfluidic jet spray dryer. Direct control over shell thickness can be achieved from the ratio of the core and shell ingredients in the precursors. A fluorescent compound, rhodamine B, is used as a highly water-soluble model component to investigate the controlled release properties of these microencapsulates, with the release behaviors shown to be significantly dependent upon their architectures |
---|---|
Beschreibung: | Date Completed 16.02.2012 Date Revised 21.11.2013 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la203249v |