Acute toxicity and responses of antioxidant systems to 1-methyl-3-octylimidazolium bromide at different developmental stages of goldfish

Acute toxicity of 1-methyl-3-octylimidazolium bromide ([C(8)mim]Br) to goldfish at different developmental stages and responses of the antioxidant system in adult goldfish were evaluated in the present study. The results indicate that post-embryonic developmental toxicity of [C(8)mim]Br on goldfish...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London, England). - 1992. - 21(2012), 1 vom: 05. Jan., Seite 253-9
1. Verfasser: Li, Xiao-Yu (VerfasserIn)
Weitere Verfasser: Zeng, Shi-Hu, Dong, Xiang-Yi, Ma, Jun-Guo, Wang, Jian-Ji
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Ecotoxicology (London, England)
Schlagworte:Journal Article Research Support, Non-U.S. Gov't 1-methyl-3-octylimidazolium bromide Antioxidants Imidazoles Ionic Liquids Malondialdehyde 4Y8F71G49Q Catalase EC 1.11.1.6 mehr... Glutathione Peroxidase EC 1.11.1.9 Superoxide Dismutase EC 1.15.1.1 Glutathione GAN16C9B8O
Beschreibung
Zusammenfassung:Acute toxicity of 1-methyl-3-octylimidazolium bromide ([C(8)mim]Br) to goldfish at different developmental stages and responses of the antioxidant system in adult goldfish were evaluated in the present study. The results indicate that post-embryonic developmental toxicity of [C(8)mim]Br on goldfish is developmental-stage dependent. The juvenile and larva goldfish are more sensitive to [C(8)mim]Br-toxicity than the adult fish. Histological observations in adult goldfish reveal that acute [C(8)mim]Br exposure damages the hepatopancreas, intestines, and kidneys, indicating that these are possible target organs of [C(8)mim]Br toxicity in goldfish. Subsequent biochemical assays in adult goldfish show that [C(8)mim]Br also induces changes in the activities of the superoxide dismutase, catalase, glutathione peroxidase, and glutathione content of fish hepatopancreas. These results suggest that [C(8)mim]Br exposure may induce oxidant stress and lipid peroxidation in hepatopancreas of adult goldfish. In addition, we also find that [C(8)mim]Br causes a remarkable increase in malondialdehyde (MDA) levels in the hepatopancreas of adult goldfish, and thus we think that the MDA level change can be a biomarker of [C(8)mim]Br toxicity in goldfish. The present study indicates that ionic liquids can be a threat to the survival, growth, and development of the fish population once they are accidentally leaked into aquatic ecosystems
Beschreibung:Date Completed 24.04.2012
Date Revised 20.10.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1573-3017
DOI:10.1007/s10646-011-0785-z