|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM211072389 |
003 |
DE-627 |
005 |
20231224012825.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2011 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la202380g
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0704.xml
|
035 |
|
|
|a (DE-627)NLM211072389
|
035 |
|
|
|a (NLM)21875131
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Xinming
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties
|
264 |
|
1 |
|c 2011
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 26.01.2012
|
500 |
|
|
|a Date Revised 28.09.2011
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2011 American Chemical Society
|
520 |
|
|
|a Integration of graphene into macroscopic architectures represents the first step toward creating a new class of graphene-based nanodevices. We report a novel yet simple approach to fabricate graphene fibers, a porous and monolithic macrostructure, from chemical vapor deposition grown graphene films. Graphene is first self-assembled from a 2D film to a 1D fiberlike structure in an organic solvent (e.g., ethanol, acetone) and then dried to give the porous and crumpled structure. The method developed here is scalable and controllable, delivering tunable morphology and pore structure by controlling the evaporation of solvents with suitable surface tension. The fibers are 20-50 μm thick, with a typical electrical conductivity of ∼1000 S/m. The cyclic voltammetric studies show typical capacitive behavior for the porous graphene fibers with good rate stability and capacitance values ranging from 0.6 to 1.4 mF/cm(2). Decorated with only 1-3 wt % MnO(2), the graphene/MnO(2) composites exhibit remarkable enhancement of combined performance both with respect to discharge capacitance (up to 12.4 mF/cm(2)) and cycling stability. This special structure could facilitate chemical doping and electrochemical energy storage and find applications in catalyst supports, sensors, supercapacitors, Li ion batteries, etc
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Zhao, Tianshuo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Kunlin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Ying
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wei, Jinquan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kang, Feiyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Dehai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Hongwei
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1999
|g 27(2011), 19 vom: 04. Okt., Seite 12164-71
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:27
|g year:2011
|g number:19
|g day:04
|g month:10
|g pages:12164-71
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la202380g
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2011
|e 19
|b 04
|c 10
|h 12164-71
|