Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties

© 2011 American Chemical Society

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 27(2011), 19 vom: 04. Okt., Seite 12164-71
1. Verfasser: Li, Xinming (VerfasserIn)
Weitere Verfasser: Zhao, Tianshuo, Wang, Kunlin, Yang, Ying, Wei, Jinquan, Kang, Feiyu, Wu, Dehai, Zhu, Hongwei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:© 2011 American Chemical Society
Integration of graphene into macroscopic architectures represents the first step toward creating a new class of graphene-based nanodevices. We report a novel yet simple approach to fabricate graphene fibers, a porous and monolithic macrostructure, from chemical vapor deposition grown graphene films. Graphene is first self-assembled from a 2D film to a 1D fiberlike structure in an organic solvent (e.g., ethanol, acetone) and then dried to give the porous and crumpled structure. The method developed here is scalable and controllable, delivering tunable morphology and pore structure by controlling the evaporation of solvents with suitable surface tension. The fibers are 20-50 μm thick, with a typical electrical conductivity of ∼1000 S/m. The cyclic voltammetric studies show typical capacitive behavior for the porous graphene fibers with good rate stability and capacitance values ranging from 0.6 to 1.4 mF/cm(2). Decorated with only 1-3 wt % MnO(2), the graphene/MnO(2) composites exhibit remarkable enhancement of combined performance both with respect to discharge capacitance (up to 12.4 mF/cm(2)) and cycling stability. This special structure could facilitate chemical doping and electrochemical energy storage and find applications in catalyst supports, sensors, supercapacitors, Li ion batteries, etc
Beschreibung:Date Completed 26.01.2012
Date Revised 28.09.2011
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la202380g