Sensitivity analysis in bayesian classification models : multiplicative deviations

The sensitivity of Bayesian pattern recognition models to multiplicative deviations in the prior and conditional probabilities is investigated for the two-class case. Explicit formulas are obtained for the factor K by which the computed posterior probabilities should be divided in order to eliminate...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 2(1980), 3 vom: 01. März, Seite 261-6
1. Verfasser: Ben-Bassat, M (VerfasserIn)
Weitere Verfasser: Klove, K L, Weil, M H
Format: Aufsatz
Sprache:English
Veröffentlicht: 1980
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM211011592
003 DE-627
005 20231224012717.0
007 tu
008 231224s1980 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0703.xml 
035 |a (DE-627)NLM211011592 
035 |a (NLM)21868901 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ben-Bassat, M  |e verfasserin  |4 aut 
245 1 0 |a Sensitivity analysis in bayesian classification models  |b multiplicative deviations 
264 1 |c 1980 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 08.04.2022 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The sensitivity of Bayesian pattern recognition models to multiplicative deviations in the prior and conditional probabilities is investigated for the two-class case. Explicit formulas are obtained for the factor K by which the computed posterior probabilities should be divided in order to eliminate the deviation effect. Numerical results for the case of binary features indicate that the Bayesian model tolerates large deviations in the prior and conditional probabilities. In fact, the a priori ratio and the likelihood ratio may deviate within a range of 65-135 percent and still produce posterior probabilities in accurate proximity of at most ±0.10. The main implication is that Bayesian systems which are based on limited data or subjective probabilities are expected to have a high percentage of correct classification despite the fact that the prior and conditional probabilities they use may deviate rather significantly from the true values 
650 4 |a Journal Article 
700 1 |a Klove, K L  |e verfasserin  |4 aut 
700 1 |a Weil, M H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 2(1980), 3 vom: 01. März, Seite 261-6  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:2  |g year:1980  |g number:3  |g day:01  |g month:03  |g pages:261-6 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 2  |j 1980  |e 3  |b 01  |c 03  |h 261-6