An intrinsic dimensionality estimator from near-neighbor information

The intrinsic dimensionality of a set of patterns is important in determining an appropriate number of features for representing the data and whether a reasonable two- or three-dimensional representation of the data exists. We propose an intuitively appealing, noniterative estimator for intrinsic di...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 1(1979), 1 vom: 01. Jan., Seite 25-37
1. Verfasser: Pettis, K W (VerfasserIn)
Weitere Verfasser: Bailey, T A, Jain, A K, Dubes, R C
Format: Aufsatz
Sprache:English
Veröffentlicht: 1979
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM211010782
003 DE-627
005 20250213044532.0
007 tu
008 231224s1979 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0703.xml 
035 |a (DE-627)NLM211010782 
035 |a (NLM)21868828 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pettis, K W  |e verfasserin  |4 aut 
245 1 3 |a An intrinsic dimensionality estimator from near-neighbor information 
264 1 |c 1979 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 12.11.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The intrinsic dimensionality of a set of patterns is important in determining an appropriate number of features for representing the data and whether a reasonable two- or three-dimensional representation of the data exists. We propose an intuitively appealing, noniterative estimator for intrinsic dimensionality which is based on nearneighbor information. We give plausible arguments supporting the consistency of this estimator. The method works well in identifying the true dimensionality for a variety of artificial data sets and is fairly insensitive to the number of samples and to the algorithmic parameters. Comparisons between this new method and the global eigenvalue approach demonstrate the utility of our estimator 
650 4 |a Journal Article 
700 1 |a Bailey, T A  |e verfasserin  |4 aut 
700 1 |a Jain, A K  |e verfasserin  |4 aut 
700 1 |a Dubes, R C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 1(1979), 1 vom: 01. Jan., Seite 25-37  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:1  |g year:1979  |g number:1  |g day:01  |g month:01  |g pages:25-37 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 1  |j 1979  |e 1  |b 01  |c 01  |h 25-37