An intrinsic dimensionality estimator from near-neighbor information

The intrinsic dimensionality of a set of patterns is important in determining an appropriate number of features for representing the data and whether a reasonable two- or three-dimensional representation of the data exists. We propose an intuitively appealing, noniterative estimator for intrinsic di...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 1(1979), 1 vom: 01. Jan., Seite 25-37
1. Verfasser: Pettis, K W (VerfasserIn)
Weitere Verfasser: Bailey, T A, Jain, A K, Dubes, R C
Format: Aufsatz
Sprache:English
Veröffentlicht: 1979
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The intrinsic dimensionality of a set of patterns is important in determining an appropriate number of features for representing the data and whether a reasonable two- or three-dimensional representation of the data exists. We propose an intuitively appealing, noniterative estimator for intrinsic dimensionality which is based on nearneighbor information. We give plausible arguments supporting the consistency of this estimator. The method works well in identifying the true dimensionality for a variety of artificial data sets and is fairly insensitive to the number of samples and to the algorithmic parameters. Comparisons between this new method and the global eigenvalue approach demonstrate the utility of our estimator
Beschreibung:Date Completed 02.10.2012
Date Revised 12.11.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539