Development and characterization of a tissue-mimicking material for high-intensity focused ultrasound
A tissue-mimicking material (TMM) for the acoustic and thermal characterization of high-intensity focused ultrasound (HIFU) devices has been developed. The material is a high-temperature hydrogel matrix (gellan gum) combined with different sizes of aluminum oxide particles and other chemicals. The u...
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 58(2011), 7 vom: 15. Juli, Seite 1397-405 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2011
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
Schlagworte: | Journal Article Research Support, U.S. Gov't, Non-P.H.S. Polysaccharides, Bacterial gellan gum 7593U09I4D Aluminum Oxide LMI26O6933 |
Zusammenfassung: | A tissue-mimicking material (TMM) for the acoustic and thermal characterization of high-intensity focused ultrasound (HIFU) devices has been developed. The material is a high-temperature hydrogel matrix (gellan gum) combined with different sizes of aluminum oxide particles and other chemicals. The ultrasonic properties (attenuation coefficient, speed of sound, acoustical impedance, and the thermal conductivity and diffusivity) were characterized as a function of temperature from 20 to 70°C. The backscatter coefficient and nonlinearity parameter B/A were measured at room temperature. Importantly, the attenuation coefficient has essentially linear frequency dependence, as is the case for most mammalian tissues at 37°C. The mean value is 0.64f(0.95) dB·cm(-1) at 20°C, based on measurements from 2 to 8 MHz. Most of the other relevant physical parameters are also close to the reported values, although backscatter signals are low compared with typical human soft tissues. Repeatable and consistent temperature elevations of 40°C were produced under 20-s HIFU exposures in the TMM. This TMM is appropriate for developing standardized dosimetry techniques, validating numerical models, and determining the safety and efficacy of HIFU devices |
---|---|
Beschreibung: | Date Completed 10.11.2011 Date Revised 25.11.2016 published: Print Citation Status MEDLINE |
ISSN: | 1525-8955 |
DOI: | 10.1109/TUFFC.2011.1959 |