|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM207039070 |
003 |
DE-627 |
005 |
20231224001223.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2011 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la104903z
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0690.xml
|
035 |
|
|
|a (DE-627)NLM207039070
|
035 |
|
|
|a (NLM)21446701
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Dutta, Sounak
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Counterion-induced modulation in the antimicrobial activity and biocompatibility of amphiphilic hydrogelators
|b influence of in-situ-synthesized Ag-nanoparticle on the bactericidal property
|
264 |
|
1 |
|c 2011
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 26.08.2011
|
500 |
|
|
|a Date Revised 21.11.2013
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2011 American Chemical Society
|
520 |
|
|
|a The necessity for the development of new antimicrobial agents due to the ever increasing threat from microbes is causing a rapid surge in research. In the present work, we have shown the efficient antimicrobial activity of a series of amino acid-based hydrogelating amphiphiles through alteration in their counterion. The subtle variation in the counterion from chloride to various organic carboxylates had a significant impact on the antimicrobial properties with notable improvement in biocompatibility toward mammalian cells. Incorporation of a hydrophobic moiety in the counterion augmented the antibacterial property of the amphiphilic hydrogelator as minimum inhibitory concentration (MIC) against the Gram-positive bacterial strain, Bacillus subtilis decreased up to 5-fold (with respect to the chloride) in the case of n-hexanoate. These counterion-varied amphiphilic hydrogelators were also found to be effective against fungal strains (Candida albicans and Saccharomyces cerevisiae) where they exhibited MICs in the range of 1.0-12.5 μg/mL. To widen the spectrum of antibacterial activity, particularly against Gram-negative bacteria, silver nanoparticles (AgNPs) were synthesized in situ within the supramolecular assemblies of the carboxylate hydrogelators. These AgNP-amphiphile soft-nanocomposites showed bactericidal property against both Gram-positive and Gram-negative bacteria. Encouragingly, these carboxylate hydrogelators showed superior biocompatibility toward mammalian cells, HepG2 and NIH3T3, as compared to the chloride analogue at a concentration range of 10-200 μg/mL. Importantly, the AgNP composites also showed sufficient viability to mammalian cells. Because of the intrinsic hydrogelation ability of these counterion-varied amphiphiles, the resulting soft materials and the nanocomposites could find applications in biomedicine and tissue engineering
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Biocompatible Materials
|2 NLM
|
650 |
|
7 |
|a Ions
|2 NLM
|
650 |
|
7 |
|a Surface-Active Agents
|2 NLM
|
650 |
|
7 |
|a Silver
|2 NLM
|
650 |
|
7 |
|a 3M4G523W1G
|2 NLM
|
700 |
1 |
|
|a Shome, Anshupriya
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kar, Tanmoy
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Das, Prasanta Kumar
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 27(2011), 8 vom: 19. Apr., Seite 5000-8
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:27
|g year:2011
|g number:8
|g day:19
|g month:04
|g pages:5000-8
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la104903z
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2011
|e 8
|b 19
|c 04
|h 5000-8
|