Counterion-induced modulation in the antimicrobial activity and biocompatibility of amphiphilic hydrogelators : influence of in-situ-synthesized Ag-nanoparticle on the bactericidal property
© 2011 American Chemical Society
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 8 vom: 19. Apr., Seite 5000-8 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2011
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Biocompatible Materials Ions Surface-Active Agents Silver 3M4G523W1G |
Zusammenfassung: | © 2011 American Chemical Society The necessity for the development of new antimicrobial agents due to the ever increasing threat from microbes is causing a rapid surge in research. In the present work, we have shown the efficient antimicrobial activity of a series of amino acid-based hydrogelating amphiphiles through alteration in their counterion. The subtle variation in the counterion from chloride to various organic carboxylates had a significant impact on the antimicrobial properties with notable improvement in biocompatibility toward mammalian cells. Incorporation of a hydrophobic moiety in the counterion augmented the antibacterial property of the amphiphilic hydrogelator as minimum inhibitory concentration (MIC) against the Gram-positive bacterial strain, Bacillus subtilis decreased up to 5-fold (with respect to the chloride) in the case of n-hexanoate. These counterion-varied amphiphilic hydrogelators were also found to be effective against fungal strains (Candida albicans and Saccharomyces cerevisiae) where they exhibited MICs in the range of 1.0-12.5 μg/mL. To widen the spectrum of antibacterial activity, particularly against Gram-negative bacteria, silver nanoparticles (AgNPs) were synthesized in situ within the supramolecular assemblies of the carboxylate hydrogelators. These AgNP-amphiphile soft-nanocomposites showed bactericidal property against both Gram-positive and Gram-negative bacteria. Encouragingly, these carboxylate hydrogelators showed superior biocompatibility toward mammalian cells, HepG2 and NIH3T3, as compared to the chloride analogue at a concentration range of 10-200 μg/mL. Importantly, the AgNP composites also showed sufficient viability to mammalian cells. Because of the intrinsic hydrogelation ability of these counterion-varied amphiphiles, the resulting soft materials and the nanocomposites could find applications in biomedicine and tissue engineering |
---|---|
Beschreibung: | Date Completed 26.08.2011 Date Revised 21.11.2013 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la104903z |