Ferromagnetic FePt-nanoparticles/polycation hybrid capsules designed for a magnetically guided drug delivery system

The present Article describes the synthesis of ferromagnetic capsules approximately 330 nm in diameter with a nanometer-thick shell to apply to magnetic carriers in a magnetically guided drug delivery system. The magnetic shell of 5 nm in thickness is a nanohybrid, composed of ordered alloy FePt nan...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 6 vom: 15. März, Seite 2923-8
1. Verfasser: Fuchigami, Teruaki (VerfasserIn)
Weitere Verfasser: Kawamura, Ryo, Kitamoto, Yoshitaka, Nakagawa, Masaru, Namiki, Yoshihisa
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Capsules Polyamines Polyelectrolytes polycations Platinum 49DFR088MY Iron E1UOL152H7
Beschreibung
Zusammenfassung:The present Article describes the synthesis of ferromagnetic capsules approximately 330 nm in diameter with a nanometer-thick shell to apply to magnetic carriers in a magnetically guided drug delivery system. The magnetic shell of 5 nm in thickness is a nanohybrid, composed of ordered alloy FePt nanoparticles of approximately 3-4 nm in size and a polymer layer of a cationic polyelectrolyte, poly(diaryldimethylammonium chloride) (PDDA). The magnetic capsules have an excellent capacity for carrying medical drugs and genes. Surface-modified silica particles with PDDA were used as a template for the capsules. FePt nanoparticles were deposited on the PDDA-modified silica particles through a polyol method followed by dissolving the silica particles with a NaOH solution, resulting in the formation of the magnetic capsules as the final product. A three-dimensional hollow structure is maintained by the nanohybrid shell. The FePt-nanoparticles/PDDA nanohybrid shell also exhibits a ferromagnetic feature at room temperature because the FePt nanoparticles of an ordered-alloy phase are formed with the aid of PDDA despite the small size (3-4 nm)
Beschreibung:Date Completed 21.10.2014
Date Revised 09.12.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la1041019