Ferromagnetic FePt-nanoparticles/polycation hybrid capsules designed for a magnetically guided drug delivery system
The present Article describes the synthesis of ferromagnetic capsules approximately 330 nm in diameter with a nanometer-thick shell to apply to magnetic carriers in a magnetically guided drug delivery system. The magnetic shell of 5 nm in thickness is a nanohybrid, composed of ordered alloy FePt nan...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 6 vom: 15. März, Seite 2923-8 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2011
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Capsules Polyamines Polyelectrolytes polycations Platinum 49DFR088MY Iron E1UOL152H7 |
Zusammenfassung: | The present Article describes the synthesis of ferromagnetic capsules approximately 330 nm in diameter with a nanometer-thick shell to apply to magnetic carriers in a magnetically guided drug delivery system. The magnetic shell of 5 nm in thickness is a nanohybrid, composed of ordered alloy FePt nanoparticles of approximately 3-4 nm in size and a polymer layer of a cationic polyelectrolyte, poly(diaryldimethylammonium chloride) (PDDA). The magnetic capsules have an excellent capacity for carrying medical drugs and genes. Surface-modified silica particles with PDDA were used as a template for the capsules. FePt nanoparticles were deposited on the PDDA-modified silica particles through a polyol method followed by dissolving the silica particles with a NaOH solution, resulting in the formation of the magnetic capsules as the final product. A three-dimensional hollow structure is maintained by the nanohybrid shell. The FePt-nanoparticles/PDDA nanohybrid shell also exhibits a ferromagnetic feature at room temperature because the FePt nanoparticles of an ordered-alloy phase are formed with the aid of PDDA despite the small size (3-4 nm) |
---|---|
Beschreibung: | Date Completed 21.10.2014 Date Revised 09.12.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la1041019 |