Pd(II)-mediated assembly of porphyrin channels in bilayer membranes
A membrane-spanning bis(meso-3-pyridyl) porphyrin 1 has been synthesized, embedded in EYPC vesicles, and upon Pd(II) addition has been shown to form ionophores that allow the passage of anionic 5/6-carboxyfluorescein through membranes. The geometric matching of bis(meso-3-pyridyl) porphyrin 1 and tr...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 27(2011), 4 vom: 15. Feb., Seite 1448-56 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2011
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Lipid Bilayers Porphyrins Palladium 5TWQ1V240M |
Zusammenfassung: | A membrane-spanning bis(meso-3-pyridyl) porphyrin 1 has been synthesized, embedded in EYPC vesicles, and upon Pd(II) addition has been shown to form ionophores that allow the passage of anionic 5/6-carboxyfluorescein through membranes. The geometric matching of bis(meso-3-pyridyl) porphyrin 1 and trans-Pd(II) was designed to give a cyclic porphyrin trimer [PdCl(2)(1)](3). However, solution-phase studies showed that PdCl(2)(PhCN)(2) cross linked 1 into linear oligomers at porphyrin concentrations above 10 mM, although the formation of cyclic species was inferred from studies at concentrations below 2 μM. Fluorescence titrations showed that embedding porphyrin 1 in bilayers greatly reduced its affinity for Pd(II), but the combination of porphyrin 1 and Pd(II) gave an ionophoric species that increased the rate of 5/6-carboxyfluorescein (5/6-CF) transit through the phospholipid bilayer 12-fold. A maximum in the 5/6-CF release rate was observed at a Pd(II) concentration of 4 μM, and the application of a solution-phase binding model to the membrane phase showed that this peak in ionophoric activity corresponded to the greatest extent of porphyrin oligomerization. Further studies suggested these Pd(II)/porphyrin oligomers transported 5/6-CF via a channel mechanism |
---|---|
Beschreibung: | Date Completed 26.05.2011 Date Revised 21.11.2013 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la104152s |