|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM201727153 |
003 |
DE-627 |
005 |
20231223222953.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2010 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la103010c
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0672.xml
|
035 |
|
|
|a (DE-627)NLM201727153
|
035 |
|
|
|a (NLM)20857968
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wu, Chunya
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Molecular understanding of conformational dynamics of a fibronectin module on rutile (110) surface
|
264 |
|
1 |
|c 2010
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 21.01.2011
|
500 |
|
|
|a Date Revised 25.11.2016
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The conformational dynamics of the 10th type-III module of fibronectin (FN-III(10)) adsorbed on the perfect and three reduced rutile TiO(2)(110) surfaces with different types of defects was investigated by molecular dynamics (MD) simulations. Stable protein-surface complexes were presented in the four simulated models and were derived from the contributions of direct and indirect interactions of various functional groups in FN-III(10) with the metal oxide layers. A detailed analysis to characterize the overall structural stability of the adsorbed FN-III(10) molecule suggests that the bonding strength and the loss of protein secondary structure vary widely, depending on the topology of the substrate surface. The additional adsorption sites exhibiting higher activity, provided by the reduced surfaces, are responsible for the stronger FN-III(10)-TiO(2) interactions, but too high an interaction energy will cause a severe conformational deformation and therefore a significant loss of bioactivity of the adsorbed protein
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Fibronectins
|2 NLM
|
650 |
|
7 |
|a Oligopeptides
|2 NLM
|
650 |
|
7 |
|a titanium dioxide
|2 NLM
|
650 |
|
7 |
|a 15FIX9V2JP
|2 NLM
|
650 |
|
7 |
|a arginyl-glycyl-aspartic acid
|2 NLM
|
650 |
|
7 |
|a 78VO7F77PN
|2 NLM
|
650 |
|
7 |
|a Titanium
|2 NLM
|
650 |
|
7 |
|a D1JT611TNE
|2 NLM
|
700 |
1 |
|
|a Chen, Mingjun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xing, Cheng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 26(2010), 20 vom: 19. Okt., Seite 15972-81
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:26
|g year:2010
|g number:20
|g day:19
|g month:10
|g pages:15972-81
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la103010c
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 26
|j 2010
|e 20
|b 19
|c 10
|h 15972-81
|